Using a nitrilase for the surface modification of acrylic fibres.

نویسندگان

  • Teresa Matamá
  • Filipa Carneiro
  • Cristina Caparrós
  • Georg M Gübitz
  • Artur Cavaco-Paulo
چکیده

The surface of an acrylic fibre was modified with a commercial nitrilase (EC 3.5.5.1). The effect of fibre solvents and polyols on nitrilase catalysis efficiency and stability was investigated. The nitrilase action on the acrylic fabric was improved by the combined addition of 1 M sorbitol and 4% N, N-dimethylacetamide. The colour levels for samples treated with nitrilase increased 156% comparing to the control samples. When the additives were introduced in the treatment media, the colour levels increased 199%. The enzymatic conversion of nitrile groups into the corresponding carboxylic groups, on the fibre surface, was followed by the release of ammonia and polyacrylic acid. A surface erosion phenomenon took place and determined the "oscillatory" behaviour of the amount of dye uptake with time of treatment. These results showed that the outcome of the application of the nitrilase for the acrylic treatment is intimately dependent on reaction media parameters, such as time, enzyme activity and formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Fastness Properties of some Novel Triarylmethane Dyes on Acrylic Fibres

In this research, several series of triarylmethane dyes containing one or more terminal methoxy substituents with a variable tertiary amino groups have been used. These dyes have been applied to different substrates by using various methods including transfer printing and then their fastness properties were measured. These dyes shows exceptionally high light fastness (6-7) on acid modified poly...

متن کامل

Bioconversion of acrylonitrile to acrylic acid by rhodococcus ruber strain AKSH-84.

A new versatile acrylonitrile-bioconverting strain isolated from a petroleum-contaminated sludge sample and identified as Rhodococcus ruber AKSH-84 was used for optimization of medium and biotransformation conditions for nitrilase activity to produce acrylic acid. A simple and rapid HPLC protocol was optimized for quantification of acrylic acid, acrylamide, and acrylonitrile. The optimal medium...

متن کامل

Production and Characterization of a Nitrilase from Pseudomonas aeruginosa RZ44 and its Potential for Nitrile Biotransformation

Background: The conversion of nitriles into amides or carboxylic acids by nitrilase has taken its application into consideration, as the scope of its applications has recently been extended. Objectives: In this study, P. aeruginosa RZ44 was isolated from sewage in the Kerman which has Nitrile-degradation activity. In order to improve the nitrilase production, several optimization were done on e...

متن کامل

The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase.

The surface of an acrylic fibre containing about 7% of vinyl acetate was modified using Fusarium solani pisi cutinase and a commercial esterase, Texazym PES. The effect of acrylic solvents and stabilising polyols on cutinase operational stability was studied. The half-life time of cutinase increased by 3.5-fold with the addition of 15% N,N-dimethylacetamide (DMA) and by 3-fold with 1M glycerol....

متن کامل

Surface Dose Measurements on an Indigenously Made Inhomogeneous Female Pelvic Phantom Using Metal-Oxide-Semiconductor-Field-Effect-Transistor Based Dosimetric System

Introduction: Megavoltage X-ray beams are used to treat cervix cancer due to their skin-sparing effect. Preferably, the radiation surface doses should be negligible; however, it increases due to electron contamination produced by various field parameters. Therefore, it is essential to provide proper knowledge about the effect of different field parameters on radiation doses. This study sought t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology journal

دوره 2 3  شماره 

صفحات  -

تاریخ انتشار 2007